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7 C?-Algebras

7.1 The commutative Gelfand-Naimark Theorem

In the same sense as Banach algebras may be seen as an abstraction of the

space of continuous operators on a Banach space, we can abstract the concept

of continuous operators on a Hilbert space. Of course, a Hilbert space is in

particular a Banach space. So the algebras we are looking for are in particular

Banach algebras. The additional structure of interest coming from Hilbert

spaces is that of an adjoint. As in the section about Banach algebras we

work in the following exclusively over the �eld of complex numbers.

De�nition 7.1. Let A be an algebra over C. Consider a map ? : A → A
with the following properties:

• (a+ b)? = a? + b? for all a, b ∈ A.

• (λa)? = λa? for all λ ∈ C and a ∈ A.

• (ab)? = b?a? for all a, b ∈ A.

• (a?)? = a for all a ∈ A.

Then, ? is called an (anti-linear anti-multiplicative) involution.

De�nition 7.2. Let A be a Banach algebra with involution ? : A→ A such

that ‖a?a‖ = ‖a‖2. Then, A is called a C?-algebra. For an element a ∈ A,
the element a? is called its adjoint. If a? = a, then a is called self-adjoint. If

a?a = aa?, then a is called normal.

Exercise 38. Let A be a C?-algebra. (a) Show that ‖a?‖ = ‖a‖ and ‖aa?‖ =
‖a‖2 for all a ∈ A. (b) If e ∈ A is a unit, show that e? = e. (c) If a ∈ A is

invertible, show that a? is also invertible.

Exercise 39. Let A be a unital C?-algebra and a ∈ A. Show that σA(a
?) =

σA(a).

Exercise 40. Let X be a Hilbert space. (a) Show that CL(X,X) is a unital
C?-algebra. (b) Show that KL(X,X) is a C?-ideal in CL(X,X).

Exercise 41. Let A be a C?-algebra and a ∈ A. Show that there is a unique

way to write a = b+ ic so that b and c are self-adjoint.

Exercise 42. Let T be a compact topological space. Show that the Banach

algebra C(T,C) of Exercise 26 is a C?-algebra, where the involution is given

by complex conjugation.
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Proposition 7.3. Let A be a C?-algebra and a ∈ A normal. Then, ‖a2‖ =
‖a‖2 and rA(a) = ‖a‖.

Proof. We have ‖a2‖2 = ‖(a2)?(a2)‖ = ‖(a?a)?(a?a)‖ = ‖a?a‖2 = (‖a‖2)2.
This implies the �rst statement. Also, this implies ‖a2k‖ = ‖a‖2k for all

k ∈ N and hence limn→∞ ‖an‖1/n = ‖a‖ if the limit exists. But by Proposi-

tion 5.12 the limit exists and is equal to rA(a).

Proposition 7.4. Let A be a C?-algebra and a ∈ A self-adjoint. Then,

σA(a) ⊂ R.

Proof. Take α + iβ ∈ σA(a), where α, β ∈ R. Thus, for any λ ∈ R we have

α + i(β + λ) ∈ σA(a + iλe). By Proposition 5.7 we have |α + i(β + λ)| ≤
‖a+ iλe‖. We deduce

α2 + (β + λ)2 = |α+ i(β + λ)|2

≤ ‖a+ iλe‖2

= ‖(a+ iλe)?(a+ iλe)‖
= ‖(a− iλe)(a+ iλe)‖
= ‖a2 + λ2e‖
≤ ‖a2‖+ λ2

Subtracting λ2 on both sides we are left with α2 + β2 + 2βλ ≤ ‖a2‖. Since
this is satis�ed for all λ ∈ R we conclude β = 0.

Proposition 7.5. Let A be a unital C?-algebra. Then, the Gelfand transform

A→ C(ΓA,C) is a continuous unital C?-algebra homomorphism. Moreover,

its image is dense in C(ΓA,C).

Proof. By Theorem 5.28, the Gelfand transform is a continuous unital al-

gebra homomorphism. We proceed to show that it respects the ?-structure.

Let a ∈ A be self-adjoint. Then, combining Proposition 5.27 with Proposi-

tion 7.4 we get â(φ) = φ(a) ∈ σA(a) ⊂ R for all φ ∈ ΓA. So â is real-valued,

i.e., self-adjoint. In particular, â? = â?. Using the decomposition of Exer-

cise 41 this follows for general elements of A. (Explain!)

It remains to show that the image Â of the Gelfand transform is dense.

It is clear that Â separates points of ΓA by construction, vanishes nowhere

(as it contains a unit) and is invariant under complex conjugation (as it

is the image of a ?-algebra homomorphism). Thus, the Stone-Weierstrass

Theorem 4.9 ensures that Â is dense in C(ΓA,C).
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Theorem 7.6 (Gelfand-Naimark). Let A be a unital commutative C?-algebra.

Then, the Gelfand transform A→ C(ΓA,C) is an isometric isomorphism of

unital commutative C?-algebras.

Proof. Using Proposition 7.5 it remains to show that the Gelfand transform

is isometric. Surjectivity then follows from the fact that the isometric image

of a complete set is complete and hence closed. Since A is commutative all

its elements are normal. Then, by Proposition 7.3, ‖a2‖ = ‖a‖2 and we can

apply Proposition 5.29 to conclude isometry.

The Gelfand-Naimark Theorem 7.6 (in view of Exercise 29) gives rise to

a one-to-one correspondence between compact Hausdor� spaces and unital

commutative C?-algebras.

Theorem 7.7. The category of compact Hausdor� spaces is naturally equiv-

alent to the category of unital commutative C?-algebras.

Proof. Exercise.

Before we proceed we need a few more results about C?-algebras.

Lemma 7.8. Let T1 be a compact Hausdor� space, T2 be a Hausdor� space

and f : T1 → T2 a continuous bijective map. Then, f is a homeomorphism.

Proof. The image of a compact set under f is compact and hence closed

in T2. But every closed set in T1 is compact, so f is open and hence a

homeomorphism.

Proposition 7.9. Let A be a unital C?-algebra and a ∈ A normal. De�ne B
to be the unital C?-subalgebra of A generated by a. Then, B is commutative

and the Gelfand transform â of a de�nes a homeomorphism onto its image,

ΓB → σB(a) which we denote by ã.

Proof. B consists of possibly in�nite linear combinations of elements of the

form (a?)man where n,m ∈ N0 (and a0 = (a?)0 = e). In particular, B
is commutative. Consider the Gelfand transform â : ΓB → C of a in B.
Suppose â(φ) = â(ψ) for φ, ψ ∈ ΓB. Then, φ(a) = ψ(a), but also

φ(a?) = â?(φ) = â(φ) = â(ψ) = â?(ψ) = ψ(a?),

using Proposition 7.5. Thus, φ is equal to ψ on monomials (a?)man by

multiplicativity and hence on all of B by linearity and continuity. This

shows that â is injective. By Proposition 5.27 the image of â is σB(a). Thus,
â is a continuous bijective map â : ΓB → σB(a). With Lemma 7.8 it is even

a homeomorphism.
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Proposition 7.10. Let A be a unital C?-algebra and a ∈ A. Let B be a

unital C?-subalgebra containing a. Then, σB(a) = σA(a).

Proof. It is clear that σA(a) ⊆ σB(a). It remains to show that if b := λe− a
for any λ ∈ C has an inverse in A then this inverse is also contained in B.

Assume �rst that a (and hence b) is normal. We show that b−1 is even

contained in the unital C?-subalgebra C of B that is generated by b. Suppose
that b−1 is not contained in C and hence 0 ∈ σC(b). Choose m > ‖b−1‖
and de�ne a continuous function f : σC(b) → C such that f(0) = m and

|f(x)x| ≤ 1 for all x ∈ σC(b). Using Theorem 7.6 and Proposition 7.9 there

is a unique element c ∈ C such that ĉ = f ◦ b̃. Observe also that b̂ = i ◦ b̃,
where i : σC(b) → C is the inclusion map x 7→ x and hence ĉb̂ = (f · i) ◦ b̃.
Using Theorem 7.6 we �nd

m ≤ ‖f‖ = ‖c‖ = ‖cbb−1‖ ≤ ‖cb‖‖b−1‖ = ‖f · i‖‖b−1‖ ≤ ‖b−1‖.

This contradicts m > ‖b−1‖. So 0 /∈ σC(b) and b−1 ∈ C as was to be

demonstrated. This concludes the proof for the case that a is normal.

Consider now the general case. If b is not invertible in B then by

Lemma 5.8 at least one of the two elements b?b or bb? is not invertible in

B. Suppose b?b is not invertible in B (the other case proceeds analogously).

b?b is self-adjoint and in particular normal so the version of the proposition

already proofed applies and σA(b
?b) = σB(b

?b). In particular, b?b is not

invertible in A and hence b cannot be invertible in A. This completes the

proof.

7.2 Spectral decomposition of normal operators

Proposition 7.11 (Spectral Theorem for Normal Elements). Let A be a

unital C?-algebra and a ∈ A normal. Then, there exists an isometric homo-

morphism of unital ?-algebras φ : C(σA(a),C) → A such that φ(1) = a.

Proof. Exercise.Hint: Combine Proposition 7.9 with Theorem 7.6.

Of course, an important application of this is the case when A is the

algebra of continuous operators on some Hilbert space and a is a normal

operator.

In the context of this proposition we also use the notation f(a) := φ(f)
for f ∈ C(σA(a),C). We use the same notation if f is de�ned on a larger

subset of the complex plane.
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Corollary 7.12 (Continuous Spectral Mapping Theorem). Let A be a unital

C?-algebra, a ∈ A normal and f : T → C continuous such that σA(a) ⊆ T .
Then, σA(f(a)) = f(σA(a)).

Proof. Exercise.

Corollary 7.13. Let A be a unital C?-algebra and a ∈ A normal. Fur-

thermore, let f : σA(a) → C and g : f(σA(a)) → C continuous. Then

(g ◦ f)(a) = g(f(a)).

Proof. Exercise.

De�nition 7.14. Let A be a unital C?-algebra. If u ∈ A is invertible and

satis�es u? = u−1 we call u unitary. If p ∈ A is self-adjoint and satis�es p2 =
p we call it an orthogonal projector. (Exercise.Justify this terminology!)

Exercise. Let A be a unital C?-algebra.

1. Let u ∈ A be unitary. What can you say about σA(u)?

2. Let p ∈ A be an orthogonal projector. Show that σA(p) ⊆ {0, 1}.

3. Let a ∈ A be normal and σA(a) ⊂ R. Show that a is self-adjoint.

Proposition 7.15. Let A be a unital C?-algebra and a ∈ A normal. Suppose

the spectrum of a is the disjoint union of two non-empty subsets σA(a) =
s1 ∪ s2. Then, there exist a1, a2 ∈ A normal, such that σA(a1) = s1 and

σA(a2) = s2 and a = a1 + a2. Moreover, a1a2 = a2a1 = 0 and a commutes

both with a1 and a2.

Proof. Exercise.

Proposition 7.16. Let H be a Hilbert space, A := CL(H,H) and k ∈
KL(H,H) normal. Then, there exists an orthogonal projector pλ ∈ A for

each λ ∈ σA(k) such that pλpλ′ = 0 if λ 6= λ′ and

k =
∑

λ∈σA(k)

λpλ and e =
∑

λ∈σA(k)

pλ.

Proof. Exercise. (Explain also in which sense the sums converge!)
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7.3 Positive elements and states

We now move towards a characterization of noncommutative C?-algebras.

We are going to show that any unital C?-algebra is isomorphic to a C?-

subalgebra of the algebra of continuous operators on some Hilbert space.

De�nition 7.17. Let A be a unital C?-algebra. A self-adjoint element a ∈ A
is called positive i� σA(a) ⊂ [0,∞).

Exercise 43. Let T be a compact Hausdor� space and consider the C?-

algebra C(T,C). Show that the self-adjoint elements are precisely the real

valued functions and the positive elements are the functions with non-negative

values.

Proposition 7.18. Let A be a unital C?-algebra and a, b ∈ A positive. Then,

a+ b is positive.

Proof. Suppose λ ∈ σA(a+ b). Since a and b are self-adjoint so is a+ b. In
particular, σA(a + b) ⊂ R and λ is real. Set α := ‖a‖ and β := ‖b‖. Then,
(α+β)−λ ∈ σA((α+β)e−(a+b)) and thus |(α+β)−λ| ≤ rA((α+β)e−(a+b))
by Theorem 5.14. But the element (α + β)e − (a + b) is normal (and even

self-adjoint), so Proposition 7.3 applies and we have rA((α+β)e− (a+ b)) =
‖(α+ β)e− (a+ b)‖ ≤ ‖αe− a‖+ ‖βe− b‖. Again using Proposition 7.3 we

�nd ‖αe− a‖ = rA(αe− a) and ‖βe− b‖ = rA(βe− b). But σA(a) ⊆ [0, α]
by positivity and Proposition 5.7. Thus, σA(αe − a) ⊆ [0, α]. Hence, by

Theorem 5.14, rA(αe−a) ≤ α. In the same way we �nd rA(βe− b) ≤ β. We

have thus demonstrated the inequality |(α + β) − λ| ≤ α + β. This implies

λ ≥ 0, completing the proof.

Proposition 7.19. Let A be a unital C?-algebra and a ∈ A self-adjoint.

Then, there exist positive elements a+, a− ∈ A such that a = a+ − a− and

a+a− = a−a+ = 0.

Proof. Exercise. Hint: Consider the unital C?-subalgebra generated by a.

Proposition 7.20. Let A be a unital C?-algebra and a ∈ A. Then, a is

positive i� there exists b ∈ A such that a = b?b.

Proof. Exercise.

Lemma 7.21. Let A be a unital C?-algebra and a ∈ A positive and such

that ‖a‖ ≤ 1. Then, e− a is positive and ‖e− a‖ ≤ 1.
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Proof. Exercise.

A similar role to that played by the characters in the theory of commu-

tative C?-algebras is now played by states.

De�nition 7.22. Let A be a unital C?-algebra. A continuous linear func-

tional ω : A → C is called positive i� ω(a) ≥ 0 for all positive elements

a ∈ A. A positive functional ω : A→ C is called a state i� it is normalized,

i.e., i� ‖ω‖ = 1. The set ΣA of states of A is called the state space of A.

Exercise 44. Let A be a unital C?-algebra. Show that ΓA ⊆ ΣA, i.e., each

character is in particular a state.

Proposition 7.23. Let A be a unital C?-algebra and ω a positive functional

on A. Then ω(a?) = ω(a) for all a in A. In particular, ω(a) ∈ R if a is

self-adjoint.

Proof. Exercise.

Proposition 7.24. Let A be a unital C?-algebra and ω a positive functional

on A. Consider the map [·, ·]ω : A×A→ C given by [a, b]ω = ω(b?a). It has
the following properties:

1. [·, ·]ω is a sesquilinear form on A.

2. [a, b]ω = [b, a]ω for all a, b ∈ A.

3. [a, a]ω ≥ 0 for all a ∈ A.

Proof. Exercise.

This shows that we almost have a scalar product, only the de�niteness

condition is missing. Nevertheless we have the Cauchy-Schwarz inequality.

Proposition 7.25. Let A be a unital C?-algebra and ω a non-zero positive

functional on A. The following is true:

1. |[a, b]ω|2 ≤ [a, a]ω[b, b]ω for all a, b ∈ A.

2. Let a ∈ A. Then, [a, a]ω = 0 i� [a, b]ω = 0 for all b ∈ A.

3. [ab, ab]ω ≤ ‖a‖2[b, b]ω for all a, b ∈ A.

Proof. Exercise.
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Proposition 7.26. Let A be a unital C?-algebra and ω : A→ C continuous

and linear. Then, ω is a positive functional i� ‖ω‖ = ω(e).

Proof. Suppose that ω is a positive functional. Given ε > 0 there exists

a ∈ A with ‖a‖ = 1 such that ‖ω(a)‖2 ≥ ‖ω‖2 − ε. Using the Cauchy-

Schwarz inequality (Proposition 7.25.1) with b = e we �nd

‖ω(a)‖2 ≤ ω(a?a)ω(e) ≤ ‖ω‖‖a?a‖ω(e) = ‖ω‖ω(e).

Combining this with the �rst inequality we get ‖ω‖2 − ε ≤ ‖ω‖ω(e). Since

ε was arbitrary this implies ‖ω‖ ≤ ω(e). On the other hand, the inequality

ω(e) ≤ ‖ω‖ is clear.

Conversely, suppose now that ω is a continuous linear functional with

the property ‖ω‖ = ω(e). Without loss of generality we normalize ω such

that ω(e) = 1 = ‖ω‖. We �rst show that ω(a) ∈ R if a ∈ A is self-adjoint.

Assume the contrary, i.e., assume there exists a ∈ A such that ω(a) = x+ iy
with x, y ∈ R and y 6= 0. Set b := a − xe. Then, b is self-adjoint and

ω(b) = iy. For λ ∈ R we get,

|ω(b+ iλe)|2 = |iy + iλω(e)|2 = y2 + 2λy + λ2.

One the other hand,

|ω(b+ iλe)|2 ≤ ‖ω‖2‖b+ iλe‖2 = ‖(b+ iλe)?(b+ iλe)‖ ≤ ‖b‖2 + λ2.

The resulting inequality is equivalent to,

y2 + 2λy ≤ ‖b‖2,

which obviously cannot be ful�lled for arbitrary λ ∈ R (recall that y 6= 0),
giving a contradiction. This shows that ω(a) ∈ R if a ∈ A is self-adjoint.

We proceed to show that ω(a) ≥ 0 if a ∈ A is positive. Assume the

contrary, i.e., assume there is a ∈ A positive such that ω(a) < 0. (Note that
ω(a) ∈ R by the previous part of the proof.) By suitable normalization we

can achieve ‖a‖ ≤ 1 as well. By Lemma 7.21 we have ‖e− a‖ ≤ 1 and thus

|ω(e−a)| ≤ 1 since ‖ω‖ = 1. On the other hand, |ω(e−a)| = |1−ω(a)| > 1,
a contradiction. This shows that ω must be positive.

Proposition 7.27. Let A be a unital C?-algebra and a ∈ A positive. Then,

there exists a state ω ∈ ΣA such that ω(a) = ‖a‖.
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Proof. Since a is positive we have σA(a) ⊆ [0,∞). Moreover, a is normal,

so by Proposition 7.3 we have rA(a) = ‖a‖. Thus, ‖a‖ ∈ σA(a). Let B
be the unital C?-subalgebra of A generated by a. By Proposition 7.10 we

have σB(a) = σA(a) and in particular ‖a‖ ∈ σB(a). By Proposition 7.9,

â induces a homeomorphism ΓB → σB(a). In particular, there exists a

character φ ∈ ΓB such that ‖a‖ = â(φ) = φ(a). Recall that φ(e) = 1 and

‖φ‖ = 1 by Proposition 5.23. By the Hahn-Banach Theorem (Corollary 3.38)

there exists an extension of φ to a linear functional ω : A → C such that

ω|B = φ and ‖ω‖ = 1. Note in particular that ω(e) = 1 = ‖ω‖. So by

Proposition 7.26, ω ∈ ΣA.

7.4 The GNS construction

Proposition 7.28. Let A be a unital C?-algebra and ω a state on A. De�ne
Iω := {a ∈ A : [a, a]ω = 0} ⊆ A. Then, Iω is a left ideal of the algebra A. In
particular, the quotient vector space A/Iω is an inner product space with the

induced sesquilinear form.

Proof. Exercise.

De�nition 7.29. Let A be a unital C?-algebra and ω a state on A. We call

the completion of the inner product space A/Iω the Hilbert space associated

with the state ω and denote it by Hω. We denote its scalar product by

〈·, ·〉ω : Hω ×Hω → C.

A consequence of the fact that A/Iω is a left ideal is that we have a

representation of A on this space and its completion from the left.

De�nition 7.30. Let A be a unital C?-algebra and H a Hilbert space. A

homomorphism of unital ?-algebras A→ CL(H,H) is called a representation

of A. A representation that is injective is called faithful. A representation

that is surjective is called full.

Proposition 7.31. Let A,B be unital C?-algebras and φ : A → B a homo-

morphism of unital ?-algebras.

1. ‖φ(a)‖ ≤ ‖a‖ for all a ∈ A. In particular, φ is continuous.

2. If φ is injective then it is isometric.

Proof. Exercise.
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Theorem 7.32. Let A be a unital C?-algebra and ω a state on A. Then,

there is a natural representation πω : A→ CL(Hω,Hω). Moreover,

‖πω(a)‖2 ≥ ω(a?a) ∀a ∈ A,

and ‖πω‖ = 1.

Proof. De�ne the linear maps π̃ω(a) : A/Iω → A/Iω by left multiplication,

i.e., π̃ω(a) : [b] 7→ [ab]. That π̃ω(a) is well de�ned follows from Proposi-

tion 7.28 (Iω is a left ideal). By de�nition we have then π̃ω(ab) = π̃ω(a)◦π̃ω(b)
and π̃ω(e) = 1A/Iω . Furthermore, ‖π̃ω(a)‖ ≤ ‖a‖ due to Proposition 7.25.3

and hence π̃ω(a) is continuous. So we have a homomorphism of unital alge-

bras π̃ω : A→ CL(A/Iω, A/Iω). Also, π̃ω preserves the ?-structure because,

〈π̃ω(a?)[b], [c]〉ω = [a?b, c]ω = ω(c?a?b) = [b, ac]ω = 〈[b], π̃ω(a)[c]〉ω.

Since π̃ω(a) is continuous it extends to a continuous operator πω(a) : Hω →
Hω on the completion Hω of A/Iω, with the same properties. In particular,

πω is a homomorphism of unital ?-algebras.

Due to the bound ‖π̃ω(a)‖ ≤ ‖a‖ and hence ‖πω(a)‖ ≤ ‖a‖ (or due to

Proposition 7.31.1) we �nd ‖πω‖ ≤ 1. Observe also that ω(e) = 1 By Propo-

sition 7.26 and hence ‖πω(a)‖2 ≥ [ae, ae]ω/[e, e]ω = ω(a?a). In particular,

‖πω‖ ≥ ‖πω(e)‖ ≥ 1. Thus, ‖πω‖ = 1.

The construction leading to the Hilbert spacesHω and this representation

is called the GNS-construction (Gelfand-Naimark-Segal).

De�nition 7.33. Let A be a unital C?-algebra, H a Hilbert space and

φ : A→ CL(H,H) a representation. A vector ψ ∈ H is called a cyclic vector

i� {φ(a)ψ : a ∈ A} is dense in H. The representation is then called a cyclic

representation.

Proposition 7.34. Let A be a unital C?-algebra and ω a state on A. Then,
there is a cyclic vector ψ ∈ Hω with the property ω(a) = 〈πω(a)ψ,ψ〉ω for

all a ∈ A.

Proof. Exercise.

A de�ciency of the representation of Theorem 7.32 is that it is neither

faithful nor full in general. Lack of faithfulness can be remedied. The idea

is that we take the direct sum of the representations πω for all normalized

states ω.
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Proposition 7.35. Let {Hα}α∈I be a family of Hilbert spaces. Consider col-

lections ψ of elements ψα ∈ Hα with α ∈ I such that supJ⊆I

∑
α∈J ‖ψα‖2 <

∞ where J ranges over all �nite subsets of I. Then, the set H of such

collections ψ is naturally a Hilbert space and we have isometric embeddings

Hα → H for all α ∈ I.

Proof. Exercise.

De�nition 7.36. The Hilbert space H constructed in the preceding Propo-

sition is called the direct sum of the Hilbert spaces Hα and is denoted⊕
α∈I Hα.

Proposition 7.37. Let A be a unital C?-algebra, {Hα}α∈I a family of

Hilbert spaces and φα : A → CL(Hα,Hα) a representation for each α ∈ I.
Then, there exists a representation φ : A → CL(H,H) such that ‖φ(a)‖ =
supα∈I ‖φα(a)‖ for all a ∈ A, where H :=

⊕
α∈I Hα.

Proof. Exercise.

We are now ready to put everything together.

Theorem 7.38 (Gelfand-Naimark). Let A be a unital C?-algebra. Then,

there exists a Hilbert space H and a faithful representation π : A→ CL(H,H).

Proof. Exercise.

This result concludes our characterization of the structure of C?-algebras:

Each C?-algebra arises as a C?-subalgebra of the algebra of continuous op-

erators on some Hilbert space.

Exercise 45. Let A be a unital C?-algebra, H1,H2 Hilbert spaces, φ1 :
A→ CL(H1,H1) and φ2 : A→ CL(H2,H2) cyclic representations. Suppose
that 〈φ1(a)ψ1, ψ1〉1 = 〈φ2(a)ψ2, ψ2〉2 for all a ∈ A, where ψ1, ψ2 are the

cyclic vectors in H1 and H2 respectively. Show that there exists a unitary

operator (i.e., an invertible linear isometry) W : H1 → H2 such that φ(a) =
W ?ψ(a)W for all a ∈ A.


